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Abstract

Multidimensional genetic programming represents candidate solutions as sets of programs, and 

thereby provides an interesting framework for exploiting building block identification. Towards 

this goal, we investigate the use of machine learning as a way to bias which components of 

programs are promoted, and propose two semantic operators to choose where useful building 

blocks are placed during crossover. A forward stagewise crossover operator we propose leads to 

significant improvements on a set of regression problems, and produces state-of-the-art results in 

a large benchmark study. We discuss this architecture and others in terms of their propensity for 

allowing heuristic search to utilize information during the evolutionary process. Finally, we look at 

the collinearity and complexity of the data representations that result from these architectures, with 

a view towards disentangling factors of variation in application.
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1 INTRODUCTION

A central theme in genetic programming (GP) is how to identify, propagate, and properly 

compose the components of programs that contribute to good solutions. In the context of 

classification and regression, these building blocks fill the role of “feature engineering”. 

That is to say, building blocks of GP solutions are meant to explain the underlying 

factors of variation that produce the observed response. The task of optimizing a set of 

explanatory features for a problem is known as representation learning, especially in the 

larger machine learning (ML) community [3]. Representation learning is a fundamental 

challenge in ML due to its computational complexity and the role the representation plays in 
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model accuracy and interpretation. Interestingly, a variant of GP known as multidimensional 

GP (MGP) makes this relationship between building block discovery and representation 

learning explicit by optimizing a set of programs, each of which is an independent feature 

in the ML model. Our goal in this paper is to introduce semantic variation methods to MGP, 

with the goal of improving the representations it produces.

What makes a representation good? At the minimum, a good representation produces a 

model with better generalization than a model trained only on the raw data attributes. 

In addition, a good representation teases apart the factors of variation in the data into 

independent components. Finally, an ideal representation is succinct so as to promote 

intelligibility. In other words, a representation should only have as many features as there are 

independent factors in the process. Our discussion centers around these three motivations.

In the following section, we attempt to summarize the large body of work concerning 

feature construction / representation learning in GP, especially those methods that use ML 

to promote building blocks. This provides context for the MGP family of methods. We then 

describe our main contribution: the proposed methods of crossover in Section 3. We conduct 

an experiment at first on 8 regression problems, considering full hyperparameter tuning, 

and analyze the representations that are produced with and without the new crossover 

methods. Finally, we benchmark the new methods against many ML and GP methods on 

more than 100 open source regression problems. We find that the new methods of crossover 

lead to state-of-the-art results for regression. Our discussion points to further directions for 

improving representation quality within this framework.

2 BACKGROUND

Feature construction / representation learning has been a consistent theme in the GP 

community and has been studied with various architectures. Without major changes, GP 

can be applied to the task of identifying single features for regression and classification (or 

multiple features in the multiclass case [30]), and this approach has been explored in several 

works, summarized in [27]. These filter approaches generally use an information-theoretic 

measure to determine how good a program is likely to be as a feature. Optimizing single 

features requires basically no changes to GP’s methodology, but lacks the power to optimize 

features for the multivariate context in which they are typically used.

Another approach that has been studied is to treat each individual in the population as a 

feature, and to optimize an ensemble model of the entire population [2, 6, 20, 21, 40]. 

Only a single regression model is trained per generation, which demands minimal overhead. 

However, it is not well known how to properly select and vary features evolved by such a 

process. Since each individual is a feature, its fitness is heavily dependent on the current 

population. Furthermore, a desirable set of features should be essentially orthogonal in order 

to create a well-conditioned representation, and convergent evolutionary processes aim in 

the opposite direction. To overcome issues of collinearity and a convergent search process, 

the following ideas have been proposed. In evolutionary feature synthesis (EFS) [2], features 

are selected proportionally to their coefficient in a regularized linear model; in order to 

prevent multicollinearity, correlation thresholds are implemented during variation to keep 
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children different from their parents. In the feature engineering wrapper (FEW) [20, 21], 

multicollinearity is selected against by using a survival version of ϵ-lexicase selection to 

choose features. In Kaizen GP [6, 40], individuals are only added to the model if they pass 

a significance test, in a hill climbing fashion. Another option is to not use an evolutionary 

updating scheme at all, but rather to create a large set of random features and fit an ML 

model to this, as in FFX [25]. More recently, Vanneschi et. al. explored one step linear 

combinations of random programs [39], experimentally showing that they often lead to 

overfitting.

Rather than building a model from the entire population, one could apply an ML method to 

the entire program trace as a means of identifying building blocks [17]. Multiple regression 

GP (MRGP) [1] defines a program’s behavior as the Lasso [37] estimate generated over 

the entire program’s trace. One downside of this approach is the likely presence of highly 

correlated features in the program trace, leading to an ill-conditioned regression matrix. In 

a similar vein to MRGP, Behavioral GP [18] extracts information from the entire program 

trace, this time using a decision tree algorithm to identify important building blocks, which 

are stored in an archive for re-use. In both algorithms, the key insight is to use ML with 

program traces to undo the complex masking effect that program execution has on the 

behavior of building blocks that are downstream from other operations in the program (for 

further discussion on the topic of program traces see [16]).

MGP is a framework that is, in some sense, in between the ensemble techniques and the 

program trace techniques described above. Programs are represented as sets of separate 

subprograms, usually trees. Unlike population-wide models, the fitness of each individual 

is directly related to its model predictions, and individuals in the population benefit 

from typical evolutionary optimization processes. Unlike program trace-based methods, by 

using multi-output programs, MGP exposes independent components of the total program 

behavior to the ML process that produces the model. As a result, building blocks are easier 

to isolate and share among the population in direct ways.

Examples of MGP include Krawiec’s method [15], M2GP [13], M3GP [28], e-M3GP [36], 

M4GP [22], and FEAT [23]. In all of these methods, individuals in the population produce a 

set of corresponding outputs that are then fed into a deterministic ML method to produce the 

program’s regression or classification estimates. In the case of M2GP, M3GP, and M4GP, 

classification proceeds using a nearest centroid classifier [38], whereas linear regression 

methods are used for regression with M3GP [29] and FEAT. Although a number of methods 

have been proposed in the MGP paradigm, they have not made much use of the semantics of 

independent building blocks in each program that this architecture creates. An exception is 

[23], in which the authors use the coefficient magnitude to weight probabilities of mutation. 

The main contribution of this study is the development of semantic crossover schemes to 

leverage the architecture of MGP to a larger degree than these previous studies.

3 METHODS

In this paper we focus on the task of regression, with the goal of building a predictive 

model y x  using N paired examples T = xi, yi i = 1
N . The regression model y x  associates 
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the inputs x ∈ ℝd with a real-valued output y ∈ ℝ. The goal of feature engineering / 

representation learning is to find a new representation of x via a m-dimensional feature 

mapping ϕ x :ℝd ℝm, such that the model y ϕ x  outperforms the model y x  by some 

pre-defined metric (see above).

In MGP, each individual in the population is a candidate representation, ϕ(x), consisting of a 

set of programs ϕ1, …, ϕm . As an example, the individual

+ x1 x2 , cos x3 , exp cube x1

would encode a representation with three features: (x1 +x2), cos(x3), and exp x1
3 . 

Throughout the paper, we refer to these subprograms ϕ as features, and use the word 

attribute to refer to the independent variables in x.

MGP methods share this representation in common, and differ in terms of 1) the ML method 

used to generate the model prediction, i.e. y ϕ , 2) the crossover and mutation operators 

used, and 3) the selection process used. The crossover operators proposed in this section will 

work with any MGP method, but are designed with a linear ML pairing in mind.

3.1 Feature Engineering Automation Tool

We study a recent MGP method named the Feature Engineering Automation Tool (FEAT) 

[23], in which candidate features are parameterized by weights, θ, and used to fit a linear 

model

y = ∑
i = 1

m
βiϕi x, θ (1)

The coefficients β1, …, βm  are determined using ridge regression [12]. Note that each ϕ is 

normalized to zero mean, unit variance before ridge regression is applied. The parameters θ 
are attached to the edges of differentiable operators and updated each generation via gradient 

descent. The fitness of each individual in FEAT is its mean squared error (MSE) on the 

training set.

Feedback.—In order to promote building blocks, FEAT uses feedback from the ML 

process to bias the variation step. In a nutshell, the probability of a feature in ϕ being 

mutated or replaced by crossover is inversely related the magnitude of its coefficient β in 

Eqn. 1. Let βi n = βi /∑i
m βi . The normalized coefficient magnitudes β ∈ 0, 1  are used 

to define softmax-normalized probabilities. The probability of mutation for feature i in 

program n is denoted PMi(n), and defined as follows:
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si n = exp 1 − βi /∑
i

m
exp 1 − βi

PMi n = γsi n + 1 − γ 1
m

(2)

Here, γ is a parameter that controls the amount of feedback from the weights that is used 

to bias the selection of feature i for mutation. In our experiments, we tune γ, and also test 

whether the softmax normalization of si (n) is useful.

Selection.—In the initial work introducing FEAT [23], the authors compared several 

optimization schemes, including NSGA-II, simulated annealing, random search, ϵ-lexicase 

selection [24], and a hybrid of ϵ-lexicase selection with NSGA-II’s survival scheme. The 

final combination achieved the best results in the analysis, and is used in our work 

here. The original work attempted to address the issue of disentanglement by measuring 

the multicollinearity of representations and setting this metric as an additional objective 

during survival. However, none of the objectives tried resulted in less correlated final 

representations, and actually made them slightly worse. One of the goals of this paper is 

to explore a second hypothesis, that disentangled representations can be encouraged through 

the use of semantic variation operators, rather than through additional objectives.

Variation.—Semantic variation operators have not yet been proposed for MGP frameworks. 

The most recent MGP techniques (M3GP, M4GP and FEAT) adopt special variation 

operators that vary programs at the feature level. Feature crossover (called “root crossover” 

in [28]) swaps features between two parent representations. Feature mutation may delete 

a feature or add a random feature. M3GP, M4GP and FEAT also use standard subtree 

crossover and point mutation operators, and each of these operators occur with equal 

probability. In FEAT, however, the probabilities of each feature being chosen for mutation or 

crossover is determined by Eqn. 2.

In the following section, we describe two new semantic crossover operators for MGP that 

attempt to maintain orthogonality in the representations while moving towards models with 

lower residuals.

3.2 Semantic Crossover

The following two crossover methods are called semantic because they use information 

about the program’s outputs to determine the recombination that occurs to produce a child 

from two parents. Both operators are based on the following observations. We have two 

parent representations, ϕp1 and ϕp2, with corresponding model outputs yp1 and yp2 that are 

linear combinations of their respective representations, as in Eqn. 1. We want to produce 

the best combination of ϕp1 and ϕp2 for the child representation ϕc. Basically we can treat 

this as a feature selection problem, where we have features ϕA = ϕp1 ∪ ϕp2 and we want to 

pick the best. On one hand we could simply concatenate the feature sets, and generate a 

new model y ϕA , which is the linear model fit to all features of both parents. This approach 
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would lead to exponential growth in offspring, which would run against our goal of lowering 

complexity.

In lieu of that approach, we propose here what are essentially regularized versions of 

semantic crossover that constrain the number of features in the offspring to be of equal 

cardinality to ϕp1, i.e. ϕc = ϕp1 . The first operator, best residual fit crossover (ResXO), 

chooses a feature from ϕp1 to be replaced, and then chooses the feature in ϕp2 that best 

approximates the residual of the model after removing this feature. The second operator, 

stagewise crossover (StageXO), uses forward stagewise regression [14] as a feature selection 

method to iteratively construct the offspring.

3.3 Best residual fit crossover (ResXO)

Given parents p1 and p2, ResXO swaps a feature in p1 with the feature in p2 that most 

closely approximates the residual error of p1 with the selected feature removed. The child 

representation is denoted as ϕc. The steps are as follows:

1. pick ϕd from ϕp1 using probabilities given by Eqn. 2.

2. calculate the residual of p1 without ϕd:

r = y − yp1 − βdϕd

3. choose ϕ∗ from ϕp2, which is the feature most correlated with r.

4. ϕc = ϕp1 with ϕd replaced by ϕ∗.

ResXO is a semantic backpropagation operator [7, 11, 33], since it seeks to replace a 

component of the parent program with a subprogram most closely matching the desired 

semantics, given by r. Within the MGP framework, this backpropagation is very simple, 

and does not require complex inversion operations to be introduced. We expect that ResXO 

will also lead to lower correlations between features in ϕc than in ϕp1. To understand why, 

consider that

r = y − ∑
ϕi ∈ ϕp1\ϕd

βiϕi

Therefore r should have low correlation with the rest of the p1’s representation. Assuming 

the replacement feature from ϕp2 closely matches r, it should also be uncorrelated with 

ϕp1\ϕd . Note that ResXO may produce an individual with higher squared error than its 

parents, since ϕd may be more correlated with r than ϕ∗.

3.4 Forward stagewise crossover (StageXO)

Rather than restricting crossover to the replacement of a single feature, the crossover 

operator can be used to compile the set of features that iteratively reduce the target error 

using a forward stagewise crossover method we call StageXO. The procedure is as follows:
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1. set the initial residual equal to the target: r = y. Center means around zero for all 

ϕ.

2. set ϕA to be all subprograms in ϕp1 and ϕp2.

3. while ϕc < ϕp1 :

a. pick ϕ∗ from ϕA which is most correlated with r.

b. compute the least squares coefficient b for ϕ∗ fit to r .

c. update r = r − bϕ∗

d. add ϕ∗ to ϕc.

e. remove ϕ∗ from ϕA.

Unlike feature selection methods like forward/backward stepwise selection, forward 

stagewise selection only calculates the weight of a single feature at a time, and is thus 

more lightweight. The downside of this approach in the context of regression is that it 

generally takes more iterations to reach the least squares coefficients of the complete model 

[10]. In our case this is unimportant, since we are only interested in quickly choosing the 

most important features, which are then used to fit a multiple linear regression model. We 

expect the child representation returned by StageXO to contain uncorrelated features since 

the residual is updated each iteration to remove the portion of the response explained by 

previous features.

Forward stagewise regression, and therefore the StageXO operator, is closely related to 

boosting [9]. In both cases the residual is iteratively reduced by adding model components 

(weak learners in the case of boosting, and features/building blocks in our case). The 

relationship between forward stagewise regression, boosting, and regularized linear models 

is expounded upon in [10]. The stagewise additive modeling paradigm is also used by a 

recent GP technique called Wave [26], in which GP runs are iteratively trained on residuals 

of previous runs. The insight here is that the unique representation of programs in MGP 

allows the same general methodology to be exploited for combining partial solutions during 

crossover, rather than as a post-run ensemble method.

4 EXPERIMENT

Our experiment consists of two stages. First, we conduct an extensive study of FEAT with 

and without the semantic crossover operators introduced in Section 3. In this study we vary 

the hyperparameters related to variation and analyze the results in detail for 8 regression 

problems. In the second study, we apply FEAT, FEATResXO, and FEATStageXO to more 

than 100 problems from the PMLB regression benchmark [32]. These variants are compared 

to state-of-the-art symbolic regression and ML methods.

4.1 Hyperparameter study

Despite several MGP methods having been proposed, there has not been a systematic study 

of the effect of variation operators on the performance of this family of methods. To fill 

this gap, and to properly analyze the new methods introduced in this paper, we performed 
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a grid search of variation hyperparameters on 8 regression problems. The hyperparameters 

that were varied are shown in Table 1.

Feedback softmax normalization refers to the softmax transformation in Eqn. 2; we tested 

for whether this normalization, which assumes a multinomial distribution of probabilities, 

was useful. The eight comparison problems are listed in Table 2.

4.2 Benchmark comparison

In the second study, we compared FEAT with each crossover variant to 15 other methods: 5 

GP methods [1, 4, 19, 35] and 10 ML methods from scikit-learn [34]. The 5 GP methods we 

compared to are:

• Geometric Semantic GP (GSGP) [4]

• MRGP [1]

• Age-fitness Pareto Optimization (AFP) [35]

• ϵ-lexicase selection (EPLEX) [19]

• ϵ-lexicase selection with 1 million evaluations (EPLEX-1M) [19]

These methods were benchmarked on 94 open-source datasets collected in the Penn ML 

Benchmark [31]. We used results from Orzechowski et. al.’s benchmark analysis [32] 

as a comparison, and followed the same validation procedure. Each comparison method 

underwent hyperparameter tuning using 5-fold cross validation on a 75% split of the training 

set, and was then tested on a 25% test fold. The hyperparameters are detailed in Table 1 

of the original work [32]. This process was repeated for 10 trials. GP methods were given 

100,000 evaluations, apart from EPLEX-1M which used 1 million. For FEAT, we did not 

re-tune the hyperparameters, instead using the values determined from the hyperparameter 

tuning experiment.

We also extended the PMLB comparison to larger datasets because we were interested in 

1) how FEAT handled larger datasets (the original study was restricted to smaller datasets, 

c.f. Fig. 1 of [32]) and also how the size of the final models compared to other top-ranking 

algorithms such as XGBoost [5] and multilayer perceptron (MLP). The extended analysis 

included 111 datasets, whose properties are shown in Fig. 1. These datasets are used to 

evaluate the complexity of the final models.

4.3 Metrics

As mentioned earlier, we consider there to be three over-arching goals when learning a 

representation. The first is that ϕ (x) leads to a model with a low generalization error. To 

measure this, we compare the mean squared error (MSE) and coefficient of determination 

(R2) of each model output on the test set. We also wish to minimize the complexity of the 

representation. To measure the complexity of solutions in FEAT, we count the total number 

of nodes in the final representation. For comparison to XGBoost, we count the number 

of nodes in the trees, and for comparison to MLP, we count the number of nodes in the 

network. Finally, we want a representation that is “disentangled”, meaning that each feature 
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of ϕ is as orthogonal to the others as possible. One such measure is the pairwise Pearson 

correlations of features in ϕ, written as

Corr ϕ = 1
N N − 1 ∑

ϕi, ϕj ∈ ϕ, i ≠ j

cov ϕi, ϕj
σ ϕi σ ϕj

2
(3)

We use this equation to compare the final representations across selection methods.

5 RESULTS

The hyperparameter tuning results are presented first. In addition to test score reporting, 

we plot various views of the data with respect to different hyperparameters, and also look 

at representation correlations in the resultant models and statistical comparisons. In the 

subsequent section, the PMLB comparison results are shown, including score comparisons, 

runtime comparisons, statistical tests and comparisons of the final model sizes for FEAT, 

XGBoost, and MLP learners.

5.1 Hyperparameter tuning

Prediction comparisons for each crossover method are shown in Fig. 2 for the 8 tuning 

problems. The plot shows the mean test fold R2 value for the tuned estimator, summarized 

across trials. In general one can see that StageXO produces the most accurate results, 

followed by ResXO. Across the 8 problems, StageXO significantly outperforms standard 

crossover (p <0.035); the pairwise statistical comparisons are given in Table 3.

We also looked at the correlation of the representations produced by the different crossover 

methods, shown in Fig. 3. We confirmed our hypotheses that ResXO and StageXO would 

produce less correlated representations than the traditional crossover operator.

The best values for each tuned parameter is shown in Table 4. We found that softmax 

normalization did not improve the feedback probabilities. Across problems, the best 

crossover/mutation fraction was found to be 0.75 (Fig. 4), with a feature crossover 

rate of 0.75 for Feat and 0.5 for ResXO and StageXO. The best feedback value was 

problem dependent, as shown in Fig. 5. Since the feedback essentially controls the 

amount of exploration versus exploitation, it stands to reason that the ideal setting of this 

parameter would be problem dependent. Feedback levels of 0.25 were best for FEAT and 

FEATStageXO, and no feedback was best for FEATResXO. For the ResXO operator, this 

corresponds to choosing the feature to swap out of the parent at random.

5.2 Benchmark comparison

The comparisons of FEAT to 15 other methods is shown in Fig. 6. Across problems, 

FEATStageXO achieves a nearly identical ranking to EPLEX-1M, which is ϵ-lexicase 

selection run for 1 million evaluations. In this case, FEATStageXO achieves these similar 

results using 100,000 evaluations. However, the additional complexity of fitting ML models 

to each individual makes the evaluation of each individual in FEAT more costly. The wall 

clock times shown in Fig. 7 reflect this, as the FEAT wall clock times sit somewhere 

La Cava and Moore Page 9

Genet Evol Comput Conf. Author manuscript; available in PMC 2022 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between the methods that ran for 100,000 evaluations (GSGP, AFP, MRGP, EPLEX) and 

EPLEX-1M.

A Friedman test of the MSE rankings across problems indicates significant differences. 

Table 5 shows post-hoc pairwise Wilcoxon signed rank tests of the results. FEAT, 

FEATResXO, and FEATStageXO all significantly outperform the other GP-based methods 

run for 100,00 evaluations. There is no significant difference found between the FEAT 

variants, EPLEX-1M, XGBoost, GradBoost, or MLP. The FEAT variants significantly 

outperform all other ML methods across the benchmark problems.

We extend the comparison of FEAT to XGBoost, MLP and ElasticNet on 111 of the 

datasets in PMLB in order to evaluate the complexity of the final representations. The size 

comparisons are shown in Fig. 8. In general FEAT produces representations about 1.5 orders 

of magnitude smaller than XGBoost and MLP. We found that StageXO led to slightly larger 

models than Feat or FeatResXO.

6 DISCUSSION & CONCLUSION

This paper proposes semantic crossover operators for multidimensional genetic 

programming. We contend that MGP provides an interesting framework for developing 

semantic variation methods, due to the unique way that program semantics are easily teased 

apart in the multi-output architecture. The most successful of these is forward stagewise 

crossover (StageXO), which mimics forward stagewise selection to incrementally build 

an offspring from the representations of its parents. A lightweight version of semantic 

backpropagation crossover, ResXO, is also proposed. StageXO achieves better performance 

on 8 regression problems than naive crossover operators, taking into account hyperparameter 

tuning. We find that the resultant representations are also less “entangled”, i.e. less 

correlated when using these crossover methods.

We consider this to be a first foray into semantic methods for MGP, and consider the 

potential for more powerful techniques to be high. One can imagine many more semantic 

operators that take advantage of this architecture. Three extensions come to mind. The first 

is to consider the features of many programs during crossover, rather than just two parents, 

as is done with population wide semantic crossover [39], behavioral GP, or in recent work 

by Fine et. al. [8]. The second extension would be to explicitly design variation operators 

that improve the condition of the representation, for example by pruning highly correlated 

features. A third extension is to implement smarter termination conditions for stagewise 

crossover that take into account the fitness of the parents or an error tolerance.

The current methods appear to be competitive with state-of-the-art regression techniques. In 

particular, FEAT is able to achieve top ranking results with less computational complexity 

than the previous top GP method on the PMLB benchmark. It is also able to produce much 

smaller representations than XGBoost and MLP. These promising results should motivate 

further research within the MGP framework.
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Figure 1: 
Properties of the benchmarks used from PMLB [31].
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Figure 2: 
Mean 5-fold CV R2 performance for different crossover operators on the 8 tuning problems.
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Figure 3: 
Average pairwise representation correlation (Eqn. 3) for different crossover operators on the 

8 tuning problems.
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Figure 4: 
Test rankings for different crossover probabilities on the 8 tuning problems.
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Figure 5: 
Mean 5-fold CV R2 performance for different levels of feedback on the 8 tuning problems.
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Figure 6: 
Median test MSE rankings on the PMLB datasets. The box shows the quartiles of the 

rankings with whiskers showing the rest of the distribution excluding outliers. Algorithms 

are ordered left to right by best (lowest) to worst (highest) median ranking.
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Figure 7: 
Runtime comparisons on the PMLB datasets. Runtime is the wall clock time for a single 

training instance. Algorithms are ordered to match Fig. 6.
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Figure 8: 
Number of nodes in solutions on the PMLB datasets.
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Table 1:

Hyperparameter values for FEAT in the experiments. The bottom values are fixed.

Hyperparameter Values

probability of crossover (complement: mutation) [0,0.25,0.5, 0.75,1.0]

feedback (γ, Eqn. 2) [0, 0.25, 0.5, 0.75, 1.0]

type of feature crossover [Standard, ResXO, StageXO]

probability of feature crossover (complement: subtree crossover) [0.5, 0.75, 1.0]

feedback softmax normalization [On, Off]

population size 500

generations 100 (200 for PMLB)

max depth 6

maximum dimensionality min(50, 2 * |x|)

iterations of gradient descent 10
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Table 2:

Regression problems used for method comparisons.

Problem Dimension Samples

Airfoil 5 1503

Concrete 8 1030

ENC 8 768

ENH 8 768

Housing 14 506

Tower 25 3135

UBall5D 5 6024

Yacht 6 309
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Table 3:

Bonferroni-adjusted p-values using a Wilcoxon signed rank test of R2 scores for the methods across all tunng 

problems. Bold: p <0.05.

Feat FeatResXO

FeatResXO 4.6e-01

FeatStageXO 3.5e-02 1.2e-01
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Table 4:

Best hyperparameter values for FEAT across the 8 tuning problems.

Hyperparameter FEAT FEAT-ResXO FEA T-StageXO

probability of crossover 0.75 0.75 0.75

feedback 0.25 0.0 0.25

probability of feature crossover 0.75 0.5 0.5

feedback softmax normalization Off Off Off
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